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To analyze infrared and Raman processes in crystals, the normal-mode spectrum of the crystal can be 
idealized by a discrete set of oscillators. These belong to the critical points in the lattice vibration spectrum; 
such points can be determined group theoretically. This approach, plus the relevant space-group selection 
rules, is used to determine the active one-, two-, three-, and (some) four-phonon combination and overtone 
processes in diamond and zincblende structures. All two-phonon overtones are infrared dipole forbidden in 
the diamond structure, verifying a conjecture of Lax and Burstein. Two-phonon overtones of LO and LA 
modes at X are infrared dipole forbidden in zincblende. Analysis of three-phonon processes will enable 
unambiguous optical assignments of symmetry species to branches to be made in diamond and zincblende, 
thus resolving uncertainties at the critical points. Some selection rules for electric quadrupole and magnetic 
dipole processes are indicated: These may give rise to anisotropic optical absorption in cubic crystals. 

INTRODUCTION 

AN ideal crystal composed of N primitive cells with 
r distinct atoms per cell has 3Nr normal modes of 

vibration. These 3Nr modes are distributed in the 
relevant Brillouin zone, on 3r~3 optic and 3 acoustic 
branches; in each branch the mode, or phonon, fre­
quency depends parametrically upon the wave vector 
which can assume all values in, and on, the Brillouin 
zone. In order to carry out an analysis of optically active 
lattice vibration processes, we shall idealize the phonon 
spectrum, representing the 3Nr phonons by a much 
smaller number. 

Following Born, we assume that only those phonons 
in each branch participate in optical processes which 
arise from regions where there is a high density of 
phonon states per unit wave vector interval. These 
regions, or points, are known as critical points in the 
phonon dispersion. At a critical point on a branch the 
phonon frequency as a function of wave vector has 
vanishing slope in one or more directions. Thus, the 
number of phonons in the crystal which can participate 
in optical processes is the sum of products of the num­
bers of critical points for that space group times the 
number of distinct branches at each critical point. Each 
of these phonons must be assigned to one of the irre­
ducible representations of the crystal space group; i.e., 
it must belong to a crystal species (using molecular 
terminology). Using the relevant space-group theory, it 
is then possible to determine the optical activity per­
missible for such a system of crystal modes, allowing for 
the possibility of exciting one or more of these phonons. 

Here we shall enumerate the space-group selection 
rules in the diamond and zincblende structures which 
are relevant to the analysis of infrared absorption and 
Raman scattering processes in those structures. The 

* The work presented in this paper is supported in part by the 
AEC Computing and Applied Mathematics Center, Courant 
Institute of Mathematical Sciences, New York University, under 
contract AT(30-1)-1480 with the U. S. Atomic Energy Com­
mission. Some of this work was presented in an invited paper given 
at the American Physical Society, March Meeting, Baltimore, 
Maryland, 1962. 

specific application of these rules to the problem of 
unambiguously assigning symmetry species to the 
branches of the phonon spectrum will be discussed. Am­
biguities arise, in both structures, in the a priori assign­
ment of species to branch at zone points of high sym­
metry. These ambiguities can be resolved when appro­
priate experimental results are obtained, and inter­
preted, using the selection rules. The method of obtain­
ing space-group selection rules, and the rules themselves 
were given without applications in a previous paper1 to 
which reference should be made for details. 

Previously, work on this problem has been reported by 
Winston and Halford.2 These authors discussed under­
lying space-group theory in some detail, but did not 
obtain selection rules for multiphonon processes in­
volving the crystal as a whole. Their interests were in 
the direction of applications to molecular-type crystals, 
and in effect they restricted attention to modes of 
infinite wavelength (k=0) . More recently, Pollack and 
Satten3 discussed the use of space-group theory in inter­
preting electron-phonon interaction effects in the optical 
spectra of paramagnetic ions in crystals. The approach 
these authors used has some similarity to ours, although 
their interests were in local effects. 

While we shall enumerate and discuss the selection 
rules relevant to the detailed interpretation of lattice 
vibration spectra for these two space groups, we do not 
report here on numerical calculations of the phonon 
energies in particular materials. Such calculations re­
quire least-squares-type fitting of the observed features 
in the spectrum to the selection rules. A complete deter­
mination of the phonon spectrum at the critical points, 
using optical data requires inter alia (a) selection rules, 
(b) infrared absorption spectra, (c) Raman scattering 
spectra, (d) a theoretical estimate of the relative inten­
sities of allowed processes of the same order (e.g., rela­
tive intensities of various allowed two-phonon proc-

1 J. L. Birman, Phys. Rev. 127, 1093 (1962). 
2 H. Winston and R. Halford, J. Chem. Phys. 17, 607 (1949). 
3 S. A. Pollack and R. Satten, J. Chem. Phys. 36, 804 (1962); 

S. A. Pollack, Tech. Report No. 2 UCLA, 1960 (unpublished). 
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esses), and (e) a theoretical estimate of intensities of 
electric quadrupole and magnetic dipole transitions 
compared to electric dipole. The situation in these re­
spects is analogous to the molecular case. Much work 
remains to be done before results of similar accuracy 
can be obtained for crystals, as for molecules. Some of 
these problems will be discussed below. 

2. ACTIVE CRYSTAL VIBRATIONS 

If we consider the crystal as a gigantic molecule, and 
assume the Born-Karman cyclic boundary conditions, 
the symmetry group of a crystal is a finite space group. 
An active vibrational state of the crystal can then be 
excited, from the ground-vibrational state, by absorp­
tion of a single infrared quantum from the radiation 
field, or by the analogous one-quantum Raman scatter­
ing. We take the initial crystal vibrational state as the 
ground state: All vibrational quantum numbers are 
zero. For a different initial state the analysis can be 
modified, but the procedure is identical. In a multi-
phonon process, one electromagnetic quantum excites 
several crystal modes. In a two-phonon process if the 
two modes belong to different irreducible representa­
tions, one has a combination state4; if they are de­
generate partners of the same space group irreducible 
representation, one has a first overtone state.5 Higher 
order multiphonon processes may be pure combination 
states, pure overtone states, or some mixture, which is 
called a general combination.6 We shall here take the 
phonon wave vector (in infrared and Raman processes) 
as zero. These conventions agree with the procedure 
used in the molecular (point group) case.7 

A normal mode of vibration of a crystal Qj,K
(m) is 

one of (s - lm) degenerate partners,1,8 transforming accord­
ing to space group irreducible representation *k / w ) . 
Here s is the number of arms in *ky, and lm is the dimen­
sion of the allowable irreducible representation of 
9(kj)/5T(ky), and K = 1 • • • (slm). If the occupation num­
ber of the mode Qj,K

(m) is n/m\ an integer, then a vibra­
tional state of the crystal is completely specified in the 
harmonic approximation by giving the set {%(m)}. The 
corresponding eigenfunction can be denoted 

\n^\n^'\ ••••). (2.1) 

This eigenfunction transforms according to the reducible 
direct product representation 

[ * k y ( M ) ] ( n / - > ) ® [ ^ ^ / ) ] ( n / ( ^ > ) 0 . . . . (2.2) 

4 E. B. Wilson, J. C. Decius,and P. C. Cross, Molecular Vibrations 
(McGraw-Hill Book Company, Inc., New York, 1955), pp. 148-
151, discuss the analogous molecular case. 

5 See Ref. 4, pp. 151-155 for discussion of the analogous molec­
ular case. 

6 See Ref. 4 pp. 155-156 for discussion of the molecular case. 
7 Refs. 4, 5, and 6. Also, G. Herzberg, Infrared and Raman 

Spectra of Poly atonic Molecules (D. Van Nostrand Company Inc., 
New York, 1945), Chap. 3. 

8 E . P. Wigner, Nachr. Akad. Wiss. Gottingen, Math. Physik 
Kl. 2, 133 (1930). 

In (2.2), 
[ * k / - > ] ( ^ > ) (2.3) 

is the symmetrized n^m)th Kronecker power of *k / m ) . 
The representation (2.2) can be reduced to determine 
reduction coefficients 

([>y(")]<»,-*>>[M"')]oy.«-'V •' Ik,~<"">)• (2-4) 

Our published results include n^m)^Z. As previously 
indicated, we choose the initial crystal vibrational state 
as the ground state 

|0 ,0 , •••>. (2.5) 

This function transforms as r ( 1 ) for each space group. 
We choose all representations as real. 

The matrix element involved in an optical process is 
then of the form 

< ? z / m W m ' \ - - - [ 010, 0, •••>. (2.6) 

For infrared dipole absorption, the operator9 

0 is V; (2.7) 

for Raman scattering,10,11 

0 i s a , (2.8) 

where a is the polarizability tensor; for electric quad­
rupole absorption, 

e i s Q , (2.9) 

where Q is the quadrupole tensor; for magnetic dipole 
absorption 

O i s M , (2.10) 

where M is the magnetic dipole operator. The assump­
tion of infinite-wavelength light means that the tensor 
operators (2.7)-(2.10) transform for each space group 
as r ( 0 ) . This will be a reducible space-group representa­
tion, reducible into irreducible components each of 
which has wave vector (star) r . 

3. ACTIVE VIBRATIONS IN DIAMOND 

The necessary critical points12 in the diamond structure 
phonon spectrum are for wave vectors T, X, L, W. In 
diamond itself (carbon with diamond structure), 
Phillips18 has suggested an "accidental" critical point at 
2 . In Table I we list: the wave vectors for the necessary 
critical points, the phonon branches, the irreducible 
representations (species) to which each branch may 
belong, and give the assignments preferred by Lax-
Hopfield,14 on the basis of central-force-type calculations 
of a type previously discussed by Herman.15 While these 

9 Ref. 4, pp. 159-161 discuss the molecular case. 
10 Ref. 4, pp. 161-162 discuss the molecular case. 
11 M. Born and K. Huang, Dynamical Theory oj Crystal Lattices 

(Clarendon Press, Oxford, 1954), Sees. 48 and 49. 
12 L. Van Hove, Phys. Rev. 89, 1189 (1953); and J. C. Phillips, 

ibid. 104, 1263 (1956). 
13 J. C. Phillips, Phys. Rev. I l l , 147 (1959). 
14M. Lax and J. J. Hopfield, Phys. Rev. 124, 115 (1961). In 

Table I this is called L-H assignment. 
15 F. Herman, J. Phys. Chem. Solids 8, 405 (1959). 
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assignments seem reasonable, they have not been 
checked by other force-field-type calculations16 and, 
hence, must be considered tentative. We recall that in­
elastic neutron scattering can give the phonon-disper-
sion curves (phonon energy versus wave vector) but not 
the species to be assigned to each branch of the curve. 
As we shall point out below, study of the three-phonon 
region of active vibrations should enable assignments to 
be made. The Table emphasizes both the ambiguity in 
species assignment as well as (see footnote b to Table I) 
the lack of clear separation at *W of branches into 
transverse and longitudinal. There are then a total of 
11 different phonon frequencies to be assigned in a 
diamond structure material, assuming only the neces­
sary critical points. (Note added in proof. This number 
will be increased if oscillators at ''accidental" critical 
points are included. H. Bilz in private communication 
has indicated that 2 points need to be included for 
analysis of infrared and Raman processes in Si as well 
as C, thus increasing the number of phonons to 17. 

T A B L E I . Crit ical points and phonon species in Oh1 and T#. 

T A B L E I I . Two-phonon processes in diamond structure. 

Critical 
points 

Diamond 

Phonon Species 
L - H a 

assignment 

r 
*x 

*L 

*W 

0(r) 
TO(X) 

L(X)=LO(X) = 
TA(X) 

TOOL) 
LO(L) 

LA(Z) 
TA(L) 

Oi(W), 
02(W) = 

= LA(X) 

Ax (WO 
= A2(W)1 .} 

r(25+> 

*X<4> or*X<3> 

*x<» 
*X<3> or*X<4> 
•jT (3-) o r •£,(«+) 

•Z,<i+) or *Z<2-> 

*£<*-> or *£<1+> 
•£(3+) or *£<»-> 

*W<m\m=l,2 

* i w 

*XW 
• £ ( 3 - ) 

*L(1+) 

* £ ( 2 - ) 

*£(3+) 

Critical 
points 

Zincblende 

Phonon Species 

r 
*x 

*L 

kW 
Ai(W0 : 

O(r) 
TO(X) 
LO(X) 

LA(X) 

TA(X) 
TO(L) 
LO(L) 

LA(L) 
TA(L) 

02(W), Oz(W) 
A2(W), As(W)b 

*x^ 
*X™ or *X<8> 
*X<M or * J f « 
*X<5> 
• £ ( 3 ) 

*£(3) 

*P^(«), w = l , 2, 3, 4 

a See Ref. 14. 
b Cont ra ry to some implications in the l i tera ture (especially Ref. 13) there 

is no division of the modes a t * W i n t o t ransverse and longitudinal , e i ther in 
zincblende or d iamond. T h e only justification for th is usage, in the case of 
d iamond, resides in the fact t h a t in the two paramete r approximat ion (in 
which a and 0 ^ 0 in Ref. 15), the three branches a t *W (each is 12-fold 
degenerate with 5 = 6 , lm —2) are degenerate wi th the branches a t X. Thus , 
we prefer the usage here Oj(W) or Aj(W) for optic or acoustic branches , 
respectively. 

16 M. Musgrave and J. Pople, Proc. Roy. Soc. (London) A268, 474 
(1962) have proposed a valence force field for diamond; T. 
Shimanouchi, M. Tsuboi, and T. Miyazawa, J. Chem. Phys. 35, 
1957 (1961) have also discussed methods which could be used to 
calculate the phonon spectrum in diamond structure. 

Species Activity Type 

[ r ^ ] ( « 
C*X(4)](2) 

C** (1)](2) 

[**<•>](„ 

[*£<*->:i<8> 
C*£(1+)](2) 
[*£(s - ) ] ( 2 ) 

C*£(3+)](2) 
DW ( 1 )](2) 

l*w<»iw 

*x<4> ®*xv 
*x<4> <g>*x<3> 
*XW®*I») 

*£<3-) (g>*Z,<1+> 

*L(3") ®*Z(2-) 

*U*-> <g>*Z<3+> 
*L<1+) <g>*£<*-> 

*Z<1+> ®*Z(3+) 

*L<*~) <g>*L(3+) 

*W<V <g>*WM 
*WM ®*W™ 

*W<>2) <g)*T7(2) 

Overtones 

R 
R 

R 

R 
R 

R 

R 

R 

» 

Combinations 

D; R(dp) 

D;R(dp) 

D; R(dp) 

D 

R(dp) 
D{2) 

D 

R(dp) 
D 

D;R 

D(2);R(dp) 
D;R 

20 (r) 
2TO(X) 
2L(X) 

2TA(X) 
2TO(L) 

2LO(L) 

2LA(L) 

2TA(L) 

201(W);2A1(W) 

202(W)=2A2(W) 

TO(X)+L(X) 

TO(X)+TA(X) 

L(X)+TA(X) 
TO(L)+LO(L) 

TO(L)+LA(L) 

TO(L)+TA(L) 
LO(Z)-f-LA(L) 

LO(L)+TA(L) 
LA(L)+TA(Z) 

a 

a 

a In these lines the two branches, which have the same s y m m e t r y , are 
assumed dist inct . Since there are three branches a t this point in the zone, 
bu t only two distinct species, two of the branches mus t belong to the same 
species. The combinat ions which will occur are then Oi(W)-\-Ai(W); 
Oi(W) -fOa(WO ; and Ai(W) + A 2 ( W ) . See footnote a to Table I. 

I thank Professor Bilz for sending his results prior to 
publication.) 

In the diamond structure Oh7 the operator 

V transforms as r(1^~}, (3.1) 
the tensor 

a transforms as r<1+)0r<12+)0r<25+). (3.2) 

Thus, an infrared absorption process is dipole allowed 
from the ground vibrational state (2.5) to the final 
vibrational state (2.1), if among the reduction coeffi­
cients (2.4), the term ( | r ( 1 5- ))^0. If, in the reduction 
of (2.5), the coefficient (|r(15r_)) equals m, we shall 
indicate this in our Tables as D(m), thus conveying 
dipole allowed and multiplicity, m. If, in carrying out a 
reduction of (2.2), any of the coefficients (|T(1+)) or 
(|r(12+)),or (|T(25+)) are nonzero the process is Raman 
allowed. In the Tables this will be indicated as R. As in 
the molecular case,4,7 if in the direct product (2.2) 
(|r<1+>) = 0, but either (|r(12+)) or (|r<25+))^0 the 
process is active in Raman scattering but gives rise to 
depolarized scattered radiation; such a case will be 
indicated as R(dp). 

3.1. One-Phonon Processes 
As is well known the optic branch phonon at T is 

Raman active in diamond. This is the only one-phonon 
activity permitted. 
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TABLE III. Three-phonon processes in diamond structure. 

Species 

C r ^ ] ( 3 ) 
C*xw](,) 
C*^a)](« 
C^ (3)](3) 
C^(m)](3) 
[•j^(m)](3) 

Activity 

Overtones 
R 
R 
D;R 
D 

No activity 
No activity 

Typea 

30 (r) 
3T0(X) 
3L(X) 
3TA(Z) 

Simole combinations 
*X^ <8*XM <g>r<25+) 
* i w ^ i ( 3 ) ® r ( 2 5 + ) 
*xw <g>*x(3> ®r<25+> 
*x^ ®*xv ®*x^ 

* L ( 3 - ) ® * L ( 1 + ) ( g ) r ( 2 5 + > 
* L < 3 - > <g>*L(2~) ® r ( 2 5 + ) 

*Z,<8-> (g)*L<3+> <g)r<25+> 

*Z,<1+> (g)*!,^2-) (g>r<25+> 

*L< 1 + )<g)*L( 3 + )®r ( 2 5 + ) 

*!,<*-> ® * L ^ 3 + > ®r<25+> 
*Z,(3-> <g>*L<1+> (g>*X(4> 

(g*X»> 
®*X<3> 

*£(3~> <g)*L<2-> <g>*X<4> 

®*x«1> 
0*X(3) 

*L<3-> (g)*L(3+) (g>*X<4> 
®*X<J> 
<g>*x<3> 

*L<1+> ®*Z<2-> <g)*X<4> 

®*z») 
®*X<3> 

*Z,(1+> <g)*L<3+> <g)*X<4> 

O*^1) 
(8)*X(3) 

*L(2~> ®*L<3+) <g)*X<4> 
0*Z(!) 
<g>*X<3> 

•^d)0*]^( i )0r( 2 5 +> 
•^ (1 )0*1^(2 )^(25+) 

D(2);R 
D(3);R 
D(2);R 
D(3);R 
D(3) 
R 
D(fi) 
D{2) 
R 
D(S) 
D(3);R 
D{3);R 
D(3);R 
D(3);R 
D(3);R 
D(3);R 
D(6);R 
D(6);R 
D(6);R 
D;R 
D(2);R 
D(2)\R 
D(3);R 
D(3);R 
D(3);R 
D(3);R 
D(3);R 
D(3);R 
D(5);R 
D(5);R 

T O ( X ) + L ( X ) + 0 ( r ) 
T O ( X ) + T A ( X ) + 0 ( r ) 

L ( X ) + T A ( X ) + 0 ( r ) 
TO(X)+L(X)+TA(X) 

TO(L)+LO(L)+0( r ) 
TO(L)+LA(L)+0( r ) 
TO(L)+TA(L)+0( r ) 
LO(L)+LA(L)+0( r ) 
LO(L)+TA(L)+0( r ) 
LA(L)+TA(L)+0( r ) 
TO(X)+LO(L)+TO(X) 

+L(X) 
+TA(X) 

TO(Z)+LA(L)+TO(X) 
+ L ( Z ) 
-fTA(X) 

TO(L)+TA(L)+TO(X) 
-f-L(X) 
+TA(X) 

LO(Z)+LA(Z)+TO(X) 
+L(X) 
+TA(X) 

LO(L)+TA(L)+TO(X) 
+L(X) 
+TA(X) 

LA(Z)+TA(L)+TO(X) 
+L(X) 
+TA(X) 

f(W)-f-02(^)b 

0(T) + \01(W)+A1(W)h 

l A i ( W 0 + A 2 ( W 0 b 

Species Activity 

Simple combinations 
•fl7(D 0*^(1) (g)*X<4) 

®*X<u 
®*X(3> 

*W<u ®*WW ®*X<4> 
®*XM 
®*X& 

D(3);R 
D(3);R 
D(3);R 
D(3);R 
D(3);R 
D(3);R 

General combinations 
[*x(4)] (2)<g>r<25+) 
C*-Xr<1)](2)<8)r»fi+) 
[*x(3)](2) 0r(25+) 
[*x<4>] ( 2 ) ®*x<» 

®*X<3) 

l*X^l(2) ®*X(V 
®*XW 

C*x(3)] ( , ) <g>*x<4> 
®*X^ 

C*L^3-)] (2)(g)r(25+) 
C * L ( 1 + ) ] ( 2 ) ® r ^ + ) 
[*L<2->](2)®r^+> 
[*L(3+)](2)(g>r(25+> 
[*z,<3->](2) ®*x<4> 

(8)*X^> 

®*x<3) 
C*^ ( 1 + ) ] (2) (g>*x(4> 

®*X<D 

<g)*X(3> 

C^(2~)](2) ® ^ ( 4 ) 

®*X™ 
<g>*X<3> 

[ * I ( 3 + ) ] ( 2 ) ® * I ( 4 ) 

0*Xd> 
<g>*X<3> 

[n r ( 1 ) ] ( 2 ) (g>r ( 2 5 + > 
C*^(2>](2) ®r ( 2 5 + ) 
[ * ^ ( 1 ) ] ( 2 ) <g>*x<4> 

®*XM 
®*X^ 

D;R 
D(2);R 
D(2);R 
D(2); R 
D(2);R 
D;R 
D(2);R 
D;R 
D(2);R 
R 
R 
R 
R 
D(3);R 
D(3);R 
D(3);R 
D; R(dp) 
D;R 
D; R{dp) 
D;R(dp) 
D;R 
D;R(dp) 
D(3);R 
D(3);R 
D(3);R 
D(2);R 
D(2);R 
D(2);R 

D(2);R 
D(3);R 

Typea 

TO(X)-M 
L(X) + \c 

TA(X)-fJ 
TO(X)+^ 

L(X) + ^b 
TA(X)+J 

2 T 0 ( X ) + 0 ( r ) 
2L(X)+0( r ) 

2TA(X)-|-0(r) 
2T0(X)+L(X) 

+TA(X) 
2L(X)+T0(X) 

+TA(X) 
2TA(X)+T0(X) 

+L(X) 
2 T 0 ( L ) + 0 ( r ) 
2 L 0 ( L ) + 0 ( r ) 
2LA(L)+0(r) 
2TA(L)+0(r ) 
2T0(L)+T0(X) 

+L(X) 
+TA(X) 

2L0(L)+T0(X) 
+L(X) 
+TA(X) 

2LA(L)+T0(X) 
+L(X) 
+TA(X) 

2TA(L)+T0(X) 
+L(X) 
+TA(X) 

0(r)+{b 
0(r)+{b 

TO(X)+] 

L(X) + ĵ d 
LA(X)+J 

a Where possible, we follow Lax-Hopfield assignments as given in Ref. 14. 
b See footnotes to Tables I and II regarding ambiguity in assigning species to branches at W. 
0 The two phonons of same symmetry must come from different branches. The same rule obtains if the different branches of the same symmetry are *W(2>. 
* Refer to footnote b. Also note that the same selection rule holds for *W&\ Thus, each of the three *X"(m> phonons may combine with the first overtone of 

each of the three *PP"(m) phonons. 

3.2. Two-Phonon Processes 

The case of a single infrared photon being absorbed 
and simultaneously producing two phonons has been 
examined in the diamond structure by several authors.17 

In Table II we list all active two-phonon overtones and 
combinations which can arise from the phonon branches 
at the critical points. In the two-phonon case, only 
phonons from branches with the same star can arise, 
since we neglect the finite wavelength of light. In 

17 M. Lax and E. Burstein, Phys. Rev. 97, 39 (1955); M. J. 
Stephen, Proc. Phys. Soc. (London) 71, 485 (1957). The full space 
group theory was not utilized in these papers. 

Table I I we use the Lax-Hopfield assignments to label 
the branches. 

As first result we note that all two-phonon overtones 
are infrared dipole forbidden, Raman allowed in dia­
mond. This result follows from the complete reduction 
of the appropriate symmetrized square representations. 
Note, in particular, that in the reduction of the ordinary 
and the symmetrized Kronecker square of states *X (1 ), 
*X<3>, *X<4>, *W<*-\ and *W®> both even and odd repre­
sentations occur. (See Tables VI and VIII of Ref. 1). 
Thus, the parity argument advanced by Lax and 
Burstein (for the infrared result) which was based on an 
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oversimplified one-dimensional model of the diamond 
structure is not applicable, even though their conjecture 
is verified by the complete analysis. This point will again 
be discussed when we present our results for the zinc-
blende structure: vide infra. All the infrared dipole 
forbidden two-phonon overtones may give rise to quad-
rupole absorption in addition to Raman scattering. We 
return to this point later. 

Two-phonon combination infrared absorption should 
gives rise to ten ''lines" in the diamond structure, in the 
approximation in which we are working: namely that 
the crystal has eleven fundamental oscillators. The 
"lines" originating from branches *X ( m ) are both infra­
red dipole and Raman active. (These "lines" are ac­
tually bands.18) 

3.3. Three-Phonon Processes 

In Table I I I we list the active three-phonon processes, 
including overtones, combinations, and general states. 

A necessary, but not sufficient, condition for activity 
of a three-phonon process is that the direct product of 
the stars must contain I \ We are thus no longer re­
stricted to three states all with the same star. For 
example, two-phonon states *X ( w ) and *X ( m , ) may 
combine with the Raman state r ( 2 5 + ) ; states *Z/m ) and 
*L(m,,) may combine with *X ( w" } , etc. There are very 
many three-phonon processes which are infrared active 
in diamond, and this should give rise to a considerable 
complexity in the details of the absorption spectrum in 
this energy region. I t is thus desirable to obtain the 
highest resolution possible in absorption experiments 
carried out in this region, in order to obtain useful 
results. 

A most interesting result in the three-phonon region 
concerns the three-phonon overtones: £*X(3)](3) and 
[*X(4)](3). The former is infrared dipole allowed only, 
the latter Raman active only. Since one of the am­
biguities in the diamond phonon spectrum concerns 
assignment of TO or TA to *X (3 ) or *X (4 ) , we see that 
this selection rule can provide an unambiguous optical 
resolution of the uncertainty. The situation is quite 
analogous to that obtaining in the molecular case,7 

where overtone and combination bands can be used to 
resolve ambiguities of assignments. 

3.4. Higher Order Effects: Quadrupole and 
Magnetic Dipole 

Recently there has been interest in anisotropic optical 
absorption effects which may occur in cubic crystals due 
to violation of the electric dipole selection rules by 
higher order processes,19 e.g., electric quadrupole, or 
magnetic dipole. Normally violations of the dipole 
selection rules are neglected, in the study of molecular 

TABLE IV. Two-phonon processes in zincblende. 

Species 

Cr(1«]w 
[**(6)]ao 
[*xa)](2) 

[*x<3>](2) 
[*£(3)](2) 

C*£(1)]<2) 
[ W » ] ( 2 ) 

ra = l, 2 , 3 ,4 

*X<5> ®*XCD 

®*xw 
(g)*X(5) 

*X<3> ®*XM 
*LW ®*i,(i> 

*Z<3> ®*LW 

*Z<1> ®*L<» 

*ww ®*ww 
*TF(2) <g)*]̂ (2> 
*J^(3) 0*^7(3) 

*Jf (4) ®*^(4) 

*W(D (g)*Pf(2) 

*P^(D <g)*flf(3) 

*w<u ®*ww 
*JF ( 2 ) <g)*I^<3) 

*Wm ®*TF(4) 

*W(Z) ®*WW 

Activity 

D\ 
D; 

Type 

Overtones 
,R 
R 

» 
D(2);R 
D; 
R\ 

J 

D; 
D\ 
D; 
D; 
D; 

D; 

D; 
R 
R 
R 
R 

D; 
D; 
D; 
D; 
D; 
D; 

R 

20 (r) 
2T0(X) and 2TA(X) 

2L0(X) and 2LA(X) 

2T0(L) and 2TA(L) 
2L0(L) and 2LA(L) 
20i(tfO;202(WO 
2A!(W);2A2(W) 

Combinations 
R(dp)\ 
R(dp)j 
R 
R 
R{dp) 

R 

R 

R(dp) 
Ridp) 
Ridp) 
R(dp) 
R(dp) 
R(dp) 

TO(X)+LO(X); 
TA(X)+LO(X); 
TO(X)+TA(X) 
LO(X)+LA(X) 
TO(L)+LO( i ) ; 
TA(L)+LO(L); 
TO(L)+TA(X) 

LO(L)+LA(L) 

;20z(W); 
; 2AS(W) 

TO(X)+LA(X); 
TA(X)+LA(X) 

TO(L)-j-LA(L); 
TA(L)+LA(L) 

i 

a In listing these combinations it is not possible to be more specific because 
of ambiguity of assignments at *W. However, in this list of combinations, 
it is to be noted that the two phonons participating, even if of the same 
symmetry, must arise from different branches. 

infrared absorption.20 I t is not at all obvious, failing a 
quantitative estimate, that neglect of quadrupole, or 
magnetic dipole, absorption is justified in a solid. We 
note that the relevant tensor operator for quadrupole 
transition, Q, transforms in Oh7 as does a (3.2). Transi­
tions which are Raman allowed should also be quadru­
pole allowed. We thus suggest an experimental search, 
in the two-phonon overtone region, for anisotropic 
infrared absorption.21 

The magnetic dipole operator M , transforms in OK1 as 
the irreducible representation r ( 1 5 + ) . Selection rule for 
such transitions can easily be obtained from the Table in 
Ref. 1. As with the quadrupole transitions specific 
enumeration of such allowed processes will not be given 
pending either theoretical estimates of intensities or 
experimental verification, of anisotropic absorption. 

4. ACTIVE VIBRATIONS IN ZINCBLENDE 

The critical points in the zincblende-structure22 

phonon spectrum are at T, X, L, W. In Table I we list 

18 R. F. Wallis and A. A. Maraduddin, paper presented at the 
International Conference on Semiconductors, Exeter, 1962 (to be 
published). Also M. Born and K. Huang, Ref. 11, Chap. 7. 

19 R. J. Elliott, Phys. Rev. 124, 340 (1961). 

20 G. Herzberg, Ref. 7, p. 380; E. B. Wilson, et al. Ref. 4, p. 39, 
and footnote 2, p. 607. 

21 Also noted in the talk given at the APS meeting in New York, 
January 1962. See J. L. Birman, Bull. Am. Phys. Soc. 7, 65 (1962). 

22 R. H. Parmenter, Phys. Rev. 100,573 (1955), especially p. 579, 
second paragraph. 
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TABLE V. Three-phonon processes in zincblende. 

Species 

[ r < 1 6 > ] w 

C*X«>](3) 

C*x«](,) 

[*£<"»](« 
w = l , 3 

[•P^(m)](3) 

w = l, 2 , 3 ,4 

*X<» <g)*X >̂ ®r<16> 
<g>*x<3> ®r<15> 
<g>*X(fi> <g>r(15> 

*x^> ®*x& ^rciB) 
<g)*X<5> (8>r(15) 

*x<3><g>*x(6><g)r<15> 
*X<5> <g)*X<3) (8)*X^) 

* X < « ®*X<« (g>*X<5> 

*X<5> ® * X ^ <g>*X<5> 

*z<8> <g>*u» ®r<l5> 

* z ^ (g)*^1) <g>r<15> 
*z,w <g>*.L(3> ®r<15> 
*L<3> (g)*!,*1) <g>*X<6> 

( g ^ X ^ n 
<g>*X(3>J 

*Z,<J> (g)*^1) <g>*X<5> 

Activity 

Overtones 
£>;£ 
£>;£ 

R) 
No activity 

No activity 

Simple combinations 
D(2);R 
D(2);R 
D(5);R 
D;R 
D(2);R 
D(2);R 
D;R 

0(3) ; * 
D(3);R 
D(3);R 

D(2);R 
D(6);R 
D(6);R 

D(3);R-) 
D(3);R[ 

i 
D(3);R 

Type 

30 (r) 
3T0(X) and 3TA(X) 

3L0(X) and3LA(X) 

T O ( X ) + 0 ( r ) + {LA(X) orLO(X)} 
T O ( X ) + 0 ( r ) + {LA(X) or LO(X)} 
T O ( X ) + T A ( X ) + 0 ( r ) 
LO(X)+LA(X)+0(r) 
T A ( X ) + 0 ( r ) + {LA(X) orLO(X)} 
T A ( X ) + 0 ( r ) + {LA(X) or LO(X)} 
TO (X) +LA(X) + L 0 (X); 
TA(X)+LA(X)+LO(X) 
TO(X)+TA(X) + {LA(X) orLO(X)} a 

TO (X) -f TA (X) + (LO (X) or LA (X)}a 

TO(L)+LO(L)+0( r ) ; 
TO(L)+LA(Z,)+0(R; 
TA(Z)+LO(X)+0( r ) ; 
TA(L)+LA(L)+0( r ) 
LO(L)+LA(L)+0(r ) 
TO(L)+TA(L)+0(r) 
TO(Z)+LO(L)+TO(X); 
TO(L)+LA(L)+TO(X); 
TA(L)+LO(Z,)+TO(X); 
TA(L)+LA(L)+TO(X); 
TO(X)+LO(L)+TA(X); 
TO(L)+LA(L)+TA(X); 
TA(L)+LO(L)+TA(X); 
TA(L)-f-LA(L)-fTA(X) 
TO (L) + L 0 (L) + {LA (X) or LO (X)} 
TO(L)+LA(L) + {LA(X) orLO(X)} 
TA(L)+LO(L) + {LA(X) orLO(X)} 
TA(L)+LA(L) + {LA(X) or LO(X)} 
LO(L)+LA(X)+TO(X); 
LO(L)+LA(L)+TA(X) 

®*X^ 
*L<3> ®*L^ ®*X^ 

<g)*X(3> 

* w ( w ) ®*w(m,) <g>r<l5> 
m=l, 2, 3 , 4 

w ' = l , 2 , 3, 4 

D(2);R 
D(2);R 
D(12);R 

D(6);RJ 
£>(2, or 3);i? 

LO(L)+LA(L) + {LA(X) orLO(X)} 

TO(L)+TA(L)+TO(X); 
TO(L)+TA(L)-f-TA(X); 
TO(L)+TA(L)+LA(X); 
TO(L)+TA(L)+LO(X) 

All combinations of 0 ( r ) and phonons 
from two distinct branches of *PF are 
allowed. 

1 The two *X<5> modes are from different branches. 

the species assigned to each branch. As with diamond, 
note the ambiguities in assignment particularly for 
*X<m) and *W(mK 

In zincblende the dipole operator 

V transforms as V(15), (4.1) 

the polarizability tensor 

a transforms as r ( 1 ) 0 r ( 1 2 ) 0 r < 1 6 ) . (4.2) 

4.L One-Phonon Processes 

One-phonon creation is responsible for the Reststrahl 
absorption band. 
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Species Activity Type 

*W(m) <g>*IF(m,) gPXW) 
Simple combinations 

All combinations of TO(X), or TA(X), 
or LO(X), or LA(X) and phonons 
from two distinct branches of *PP are 
allowed. 

[*x<«](2)<8>r<«> 

[*X (1)](2) <8>r<16> 

[*x(3)](2) ®r<15> 
[*X<«](2)<8)*X<« 

®*xv 
®*x& 

[*x(1)](2) <g>*x(« 
<g)*X<3> 

[**w](2)<g>*X<«> 

®*Z0) 
[*£(3)](2)®r(15) 

C^ ( 1 )] ( 2)0r^) 
[ * l ^ ] ( 2 ) ® * i w 

<8>*X»> 
(g)*X<3> 

[*^(«>](2)(8)r<16) 
t » = l , 2, 3, 4 

[ n ^ > ] ( 2 ) ®*x (>"•'> 

General combinations 

D(4);R 

D(2);R\ 
D(2);Rj 
D(3);R 

D(2);R\ 
D(2);Rj 
D; R(dp)} 
D;R(dp)\ 

D;R(dp)\ 
D;R(dp)J 
D(S);R 
D(2);R 
D(7);R 

D(3);R\ 
D(3);RJ 
D(2);R 

D;R 

2TO(X)+0( r ) ; 
2TA(X)-fO(r). 

0 ( D + L O ( X ) ; 
0 ( r )+LA(X) 

2TO(X)+TA(X)b ; 
2TA(X)+TO(X)b 
2TO (X) +LO (X); 2TO (X) +LA (X); 
2TA (X) +LO (X); 2TA (X) +LA (X) 
2LO (X) + T O (X); 2LO (X) + T A (X); 
2LO(X)+LA(X) 
2LA (X) -f TO (X); 2LA (X) + T A (X); 
2LA(X)+LO(X) 
2TO(L)+0(T); 2TA(Z,)+0(r) 
2LO(L)+0( r ) ; 2LA(L)+0(r) 
2TO (L) + T O (X); 2TO (L) + T A (X); 
2TA (L) + T O (X); 2TA (L) + T A (X) 
2TO (L) +LO (X); 2TO (L) +LA (X); 
2TA (L) +LO (X); 2TA (L) +LA (X) 

All combinations of O(r) and phonon 
overtones of *IF(m) are allowed. 

All combinations of TO(X), or TA(X), 
or LA(X), or TA(X) and phonon 
overtones of *W(m) are allowed. 

3 Here two +XW modes are from the same branch, the third is from the other branch of symmetry *XW. 

4.2. Two-Phonon Processes 

The selection rules for active two-phonon processes 
are given in Table IV. Noteworthy results are the 
prohibition of two-phonon overtones of states *X (1) and 
*X (3) in infrared absorption. These are the longitudinal 
optic and acoustic branch states at *X. [These are the 
states which "originate" from the state *X (1) of dia­
mond ; this is the degenerate longitudinal state (LO and 
LA coincide) which is split when the diamond structure 
is imagined perturbed to produce zincblende. (Ref. 22, 
Table XV).] These overtones will be Raman active, 
however. The overtones of the transverse states are 
allowed; both of these (optic and acoustic) transform as 
*X ( 5 ) . Other forbidden two-phonon overtones are for 
states *W{m\ for m=l, 2, 3, 4, which originate from 
the corresponding diamond states. 

In view of the currency of arguments about selection 
rules based on the one-dimensional model and con­
jecture of Lax and Burstein,17 it seems worthwhile to 
emphasise again that the selection rules follow from the 

entire space-group analysis.23 In particular, the presence 
or absence of inversion, or inversion plus a fractional 
translation, in the space group is not simply related to 
activity or inactivity of two-phonon overtones. Thus, 
in zincblende which has no inversion symmetry certain 
overtones are forbidden. In diamond only for these 
irreducible representations for which the factor group 
g(ky)/cT(kJ) is a direct product group of inversion times 
a smaller group, can parity arguments be invoked. The 
important states *X ( m ) and *W(m) are of indefinite 
(mixed) parity and give rise to even plus odd representa­
tions when direct products are reduced. 

4.3. Three-Phonon Processes 

In Table V the active three-phonon states are listed. 
One notes that, as in diamond, very few three-phonon 
overtones are infrared active. A large number of three-

23 Dr. Lax points out (private communication) that neither he, nor 
Professor Burstein are responsible for gratuitous extensions of their 

parity results beyond the one-dimensional case which they treated. 
See the discussion immediately following Eq. (6.17) on p. 46 of 
Ref, 17. I thank Dr, Lax for clarifying this point, 
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phonon processes are active, however, as simple or 
general combinations. 

5. DISCUSSION AND SUMMARY 

Infrared lattice vibration spectra have recently been 
reported for several materials with diamond,24 and zinc-
blende25 structures. With few exceptions (e.g., the work 
of Hardy and Smith24) the interpretations of the spectra 
which have been given ignore the dispersion of phonon 
energy in each branch. That is, single characteristic 
energies are assigned to each branch (e.g., TO energy, 
etc.) and the locations of features in the spectrum are 
correlated with sums and/or differences of these few 
parameters. The temperature dependence of the spec­
trum is used as an auxiliary guide. The Lax-Burstein 
conjecture has been used as a selection rule for both 
structures. An impressive example of the fit of many 
features in the spectrum by few parameters is provided 
by the recent work of Turner and Reese.25 

A deeper examination indicates, however, that the 
situation is far from satisfactory. For example, Hardy 
and Smith24 were unable to derive a consistent set of 
fundamental phonon energies for diamond, even for the 
limited spectral region which came into their purview; 
a similar difficulty was encountered by Johnson24 for 
silicon. The demarcation by the former authors of "two-
phonon" or "three-phonon" energy regions seems not to 
take account of the likelihood, for example, that a 
combination like 2TA+LA phonons (from appropri­
ately chosen stars) will occur at energy less than two 
Raman phonons, i.e., in their "two-phonon" region. 
Certain of the assignments of Turner and Reese25 are 
not consistent with the selection rules for zincblende. 
Thus, the 2LO assignment (Ref. 25) line 1, Table I I 
must refer to two phonons of symmetry *Z,(1), but then 

24 For carbon (diamond) see J. R. Hardy and S. D. Smith, Phil. 
Mag. 6, 1163 (1961), and paper presented at the Internationa] 
Meeting on Semiconductors, Exeter, 1962 (to be published); for 
silicon, F. A. Johnson, Proc. Phys. Soc. (London) 73, 265 (1959); 
for germanium, B. N. Brockhouse and P. K. Iyengar, Phys. Rev. 
I l l , 747 (1958); also see thesis by J. F. Hirshberg, Syracuse 
University, 1958 (unpublished) available from University Micro­
films Im. Ann Arbor; M. J. Stephen, Proc. Phys. Soc. (London) 71, 
485 (1958). 

25 For GaP see D. Kleinman, W. Spitzer, Phys. Rev. 118, 110 
(1960); InSb, S. Fray, F. A. Johnson, and R. Jones, Proc. Phys. 
Soc. (London) 76, 939 (I960); SiC, W. Spitzer and D. Klein-
man, Phys. Rev. 113, 127 (1959); AlSb, W. Turner, W. Reese, 
ibid. 127, 126 (1962); GaAs, W. Cochran, S. J. Fray, F. A. John­
son, J. Quarrington, and N. Williams, Suppl. J. Appl. Phys. 32, 
2102 (1961); and ZnS, T. Deutch, in Proceedings of the Inter­
national Conference on the Physics of Semiconductors at Exeter, 
1962 (Institute of Physics and the Physical Society, London, 
1962), pp. 505-512. 

the 3LO assignment (Ref. 25) line 9, Table I I I is 
incorrect, since [*£(1)](3) is inactive. Other examples 
could be cited of inconsistencies or incompleteness in 
assignments but this is not our purpose. Finally, the 
neglect of phonon dispersion is a priori unsatisfactory in 
any theory of lattice absorption. 

I t seems evident that the quantitative study of lattice 
vibration spectra of crystals is in its infancy.26 In 
principle, this powerful tool can provide us with precise 
values of the phonon energies, at least at the critical 
points in the spectrum. The use of selection rules, such 
as those derived here for the two space groups diamond 
and zincblende, is a first and necessary step in this 
study. Having enumerated the relevant selection rules 
here, we hope to return later to their systematic appli­
cation to interpretation of spectra. 

Among the problems remaining are the estimation of 
relative intensities of various active processes. To 
procede in this direction will require better understand­
ing of the mechanism or mechanisms18 by which multi-
phonon processes are activated, so that the relevant 
matrix elements can be calculated. An experimental 
result, which may be relevant here is the detailed struc­
ture one observes in the infrared absorption spectra of 
zincblende crystals compared to diamond. Compare, for 
example, the two- and three-phonon regions in AlSb, 
reported by Turner and Reese,25 with the same regions 
in Si and C.24 

In summary, there seems every reason to expect that 
the combination of high resolution infrared absorption 
spectroscopy, and Raman scattering, data (the latter 
perhaps made easier by available laser sources) may 
provide significant keys by which the phonon disper­
sions in solids can be determined. In the interpretation 
of these data, space-group selection rules will surely play 
as central a role as in the molecular case. 

ACKNOWLEDGMENTS 

I thank Dr. R. Loudon and Dr. R. J. Elliott for com­
municating their results on two-phonon processes in 
diamond and zincblende; these were independently ob­
tained by their method27 and enabled me to correct 
some omissions in Tables I I and IV. 

26 For a recent review of infrared spectra of solids see S. S. 
Mitra, in Solid State Physics, edited by F. Seitz, and D. Turnbull 
(Academic Press Inc., New York, 1962), Vol. 13, p. 2; Some ac­
counts of Raman spectra of solids are given by S. Mizushima, in 
Handbuch derPhysik, edited by S. Fliigge (Springer-Verlag, Berlin, 
1958), Vol. 26, p. 171. 

27 R. J. Elliott and R. Loudon, J. Phys. Chem. Solids 15, 146 
(1960). 


